人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。下面宣城盛宇小编来给大家介绍一下人脸图像采集及检测。
人脸图像采集:不同的人脸图像都能通过---镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到---的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
人脸识别系统是从---点之间的距离和比率作为特征,人脸识别,识别速度快,内存要求比较小,酒店人脸识别,对于光照敏感度降低。
1、基于模型特征
根据不同特征状态所具有概率不同而提取人脸图像特征。
2、基于统计特征
将人脸图像视为随机向量,并用统计方法辨别不同人脸特征模式,学校人脸识别,比较典型的有特征脸、独立成分分析、奇异值分解等。
3、基于神经网络特征
利用大量神经单元对人脸图像特征进行联想存储和记忆,根据不同神经单元状态的概率实现对人脸图像准确识别。
人脸识别系统是根据所提取的人脸图像特征采用相关识别算法进行人脸确认或辨别。即将已检测到的待识别人脸与数据库中已知人脸进行比较匹配,得出相关信息,该过程的关键是选择适当的人脸表征方式与匹配策略,小区人脸识别,系统的构造与人脸的表征方式密切相关。一般根据所提特征而选择不同识别算法进行度量,常用的包括距离度量、支持向量机、神经网络、k均值聚类等。
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。下面宣城盛宇小编给大家介绍一下人脸图像特征提取。
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。
人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
小区人脸识别-人脸识别-宣城盛宇智能设施由宣城市盛宇防护设施有限公司提供。行路致远,---。宣城市盛宇防护设施有限公司致力成为与您共赢、共生、共同前行的---,与您一起飞跃,共同成功!
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz304227.zhaoshang100.com/zhaoshang/217568879.html
关键词: